

Digitalization Offerings to Cement Industry

Al Pyro + Al Mill

A Siemens Business

AI* based Digital Solutions for Cement

- 1. Al Pyro Operations
- 2. AI Mill Operations
- **3.** SiDAD
- **4.** Anomaly Detection Preheater
- **5.** Anomaly Detection Wagon Tippler

- Coal Reduction & fuel ratio stabilization along with AFR usage
- Power Savings & Increase in Throughput thru' stabile operations
- Comprehensive plant-wide visibility for precise decision making
- Early detection of Cyclone jamming
- Early detection of Breakdowns & Cycle time reduction

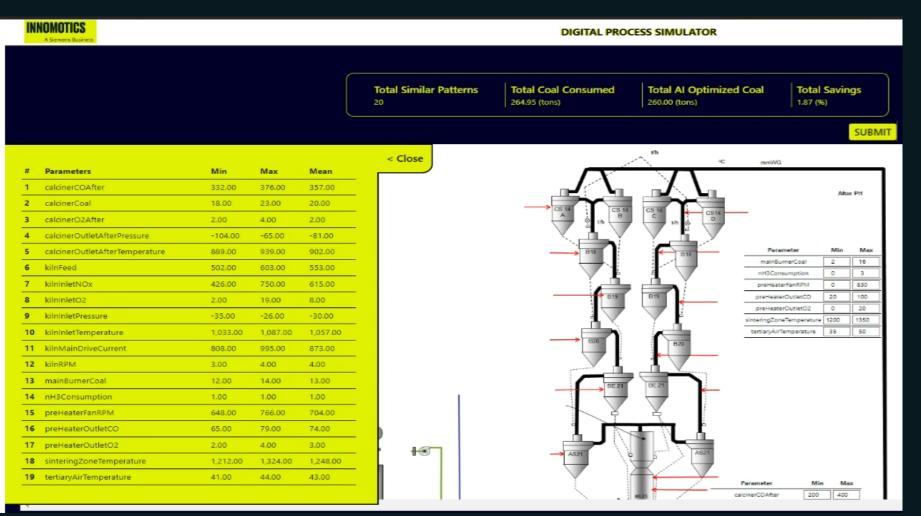
*Artificial Intelligence

Al Pyro Operation - Supports Operator to maintain Process Stability and Efficient Operation

Benefits

Stability	Ensuring all Temperature, pressures ,are within operating range , Optimizing ID fan speed and pressure after preheater		
Coal reduction	Identifying optimum points where coal can be reduced		
Fuel ratio stabilization with coal vs AFR	Set point for Step-by-step moderation of AFR/Coal is carried out by AI thereby maintaining the required heat at calciner and Kiln .		
Good Quality + Increased Production	Any change in control parameter is carried out by ensuing the Alite and Free lime are within operating range Potential to increase Kiln Feed thereby increasing production		
Energy Savings	Optimizing Fans at cooler, AI can achieve energy savings		
Preheater Jamming reduction	AI observes SO3 and Chloride formation , material temperature and pressures Changes AFR accordingly thereby preheater jamming occurrence is reduced		
Optimize Workforce	Best Expert available for 24 Hours		

Al Pyro Operation - Supports Operator to maintain Process Stability and Efficient Operation First Deliverable : Digital Database : Expert Operator Guidance Tool - 6 – 7 weeks


ence 1	Reference 2	Reference 3	Reference 4																
						Histor	ian Date : 2	2023 / 07	/ 12 - 22:2:	3:00									
coalMair	nBurner_reference	coalMainBurn	er_current ki li	nFeed_refere	nce 🗾 I	kilnFeed_c	current	calciner	leadTemp_r	eference	calc	inerHeadT	emp_curre	ent 🗾 ro	fMainBurn	er_reference	e 🗾 rdfl	MainBurner	_curre
			rdfSatelliteBu	rner_referend	ce e rd i	SatelliteB	urner_currer	nt si	nteringZone [:]	Temp_ref	erence	sinterin	IgZoneTerr	np_current					
				C	urrent	Tren	d												
				\square	$\langle $						Fx	pert T	rend						
								•••••											
								•••••											+
									_										
						••••													
	0 (contenti) ca) = 15:16:00 (contenti) ca) = 15:16:00 (contenti) 15:0 (mitaterance) = 15:17:00 (co 22:12:00) 22:12:00)	orrent) 15:18:06 (current) 15:18:06 (current) 15:19:06 (current)	1 (current) 1 - 15:21:00 (current) - 15:22:00 (current) - 15:22:00 (current) - 15:22:00 (current)	6) (3.90 (correct) (3.90 (correct))	15:25:50 (custom) 15:25:50 (custom)	10 (current) 10 (current) 15:27:00	(current)) - 15:28:00 (current) - 15:28:00 (current) - 15:28:00 (current)	6) (200 (current) (200 (current) (200 (current))	(custrenti) 22.24:00 (neterenti 22.25	an) (00 (return(100) 22.25(00)	(reterence) 22:27:00 (ret	erence) 22.28:00 (referen 22.21	22:30:00 22:30:00	(relierence) 22:31:00 (relier 22	ence) 32:00 (reterence) 22:33:0	(reterence) 22:34:00 (reter 22:34:00 (reter	199768) 13509 (1846789769 22:385	0 (neterance) 22:37:00 (net	erence) 2238500
209.00 (retends	22:11:00 (milenania) 22:11:00 (milenania) 22:12:00	22:13:00 (milenature) 22:15/	00 (millional 10.00 (millional 10.00 (million 22:17:00 (millional 10.00 (million 22:17:00 (millional 10.00 (million	22:19:00 (mtonania)	22.20.00 (refere 22.20.00 (refere	1.00 (milerature) 22.72.0	0 (references) 22:23:50 (refer	hat we a											

- All the changes made by the operator in the control parameters to optimize the process are recorded in digital format
- Guides operator to take appropriate step by step action for a particular condition.
- Provide operator with multiple option and operator can choose anyone of them
- Operator can refer to this tool anytime for any situation.
- Measurement of the technological parameter and trend monitoring of their changes necessary for controlling the equipment
- > Tool will assist operator like Expert.

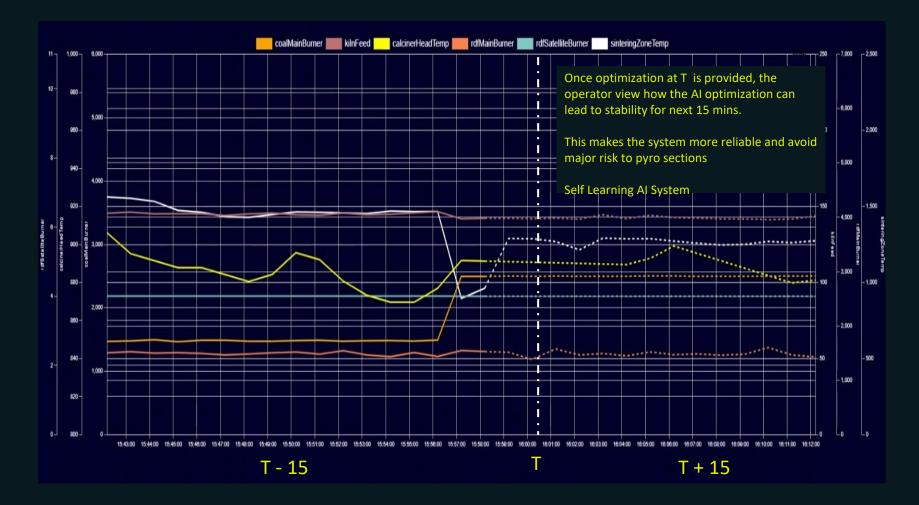
Al Pyro Operation

Second Deliverable : AI Digital Simulator : Operator can simulate any condition – 5 – 6 Weeks

- Operator can simulate any conditions
- Operator can identify the best operating points for a particular condition
- Provide can define the strategy for production increase, reduction of coal
- Kind of Digital Twin

Al Pyro Operation

Third Deliverable : AI Pyro Process Model : 4 -5 weeks

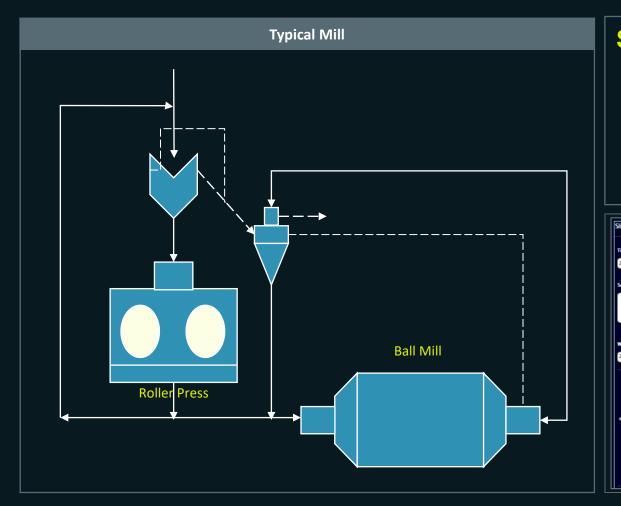


- Coal Main burner is reduced from 1001 to 380 kg/h
- Increase in RDF Main Burner from 2613 to 2695 kg/h
- Kiln Feed can be increased from 134.51 to 135.15 thereby increasing production
- Sintering Zone temperature will be stable based on the Recommended fingerprint for next 30 mins

Al Pyro Operation Trusted Al Optimization

From a large data points, our Al Optimization picks up only data points that leads to stability for next T + X hours.

For every step change in control parameter, our AI analyze its impact on Process parameters .


Al Pyro Operation

Kiln Startup - For every Light up, Time saving ≈ 30 Mins

- Gas Main burner is increased in step-by-step manner to light up the kiln.
- Once the sintering zone temperature started increasing, Main burner coal is increased along with Kiln Feed in step-bystep manner.
- Once the sintering zone temperature becomes stable, slowly the gas main burner is decreased

AI Mill - Supports Operator to maintain Process Stability and Efficient Operation

Solution at a Glance

THE CHINED

AI Mode Mill solution to assist mill operators by providing optimal set-point to enable efficient and stable operation, thereby enhance productivity.

Identify patterns for better correlation among parameters.

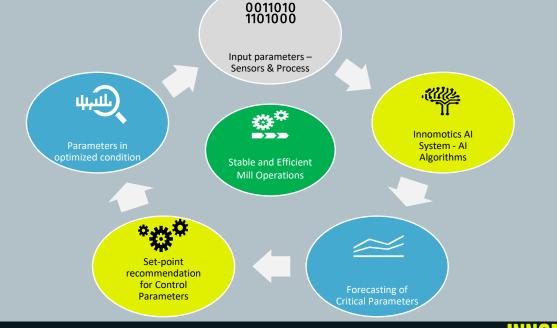
AI Mill Operation

Proven AI assisted Auto-pilot Mill Operation Model (1/2)

Customer Challenge

- Lower Productivity
- High Power Consumption
- Variations in clinker feed rate, separator speed, grinding aid could proportionally impact the cement quality

...Frequent overshooting of critical parameters beyond optimum range

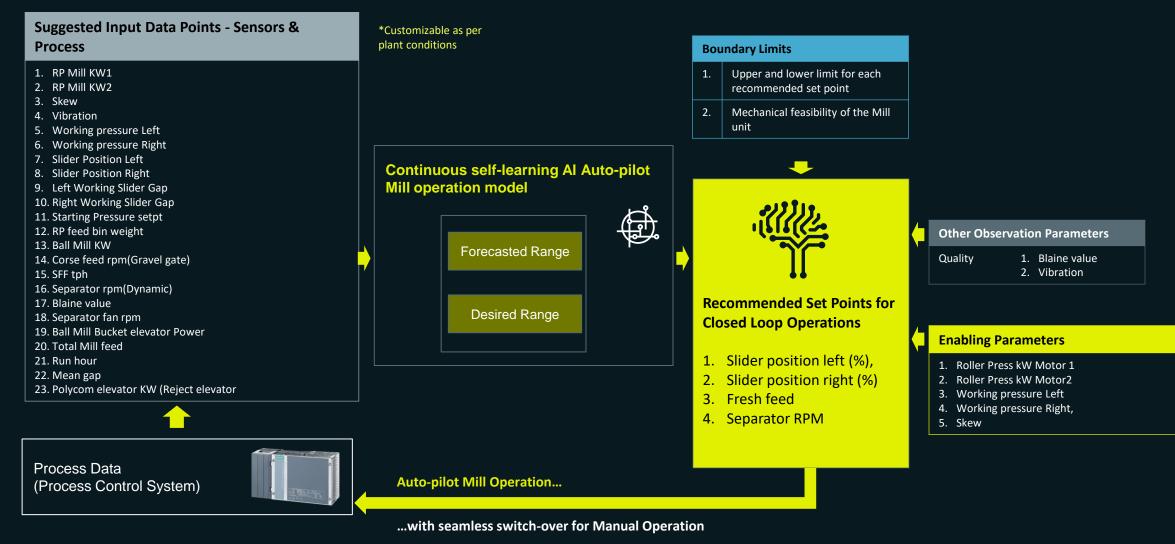

1101000

Causing:

- Instable Mill conditions
- Frequent tripping of Mill
- Lower Throughput

Our Solution

- Forecasts critical parameters and recommends set-points for control parameters
- Maintains the parameters in optimum range


Solution Benefits

- Stable operation of Mill
- Increases productivity
- Increases operational efficiency:
 - Increases Throughput
 - Reduces Power consumption

AI Mill Operation

Proven AI assisted Auto-pilot Mill Operation Model (2/2)

Calculated Benefits from AI Mill Digital Solution at a Cement Plant in India

For Cement Mill – Roller Press + Ball Mill

Based on Data (of stable conditions) observed for March 2024 (OPC 43 / 53)

INR 45+

Lakh / yr.

for	Operation		Average of cm IPH	Average of	Average of		Average of Specific Power				
	Mode	Run Hrs.		•	silofeedeleva		Consumption kWh		seperatorRpm		
		Manual 83.29 284.07		274.46	79.45		23.97		981.18		
	Al Mode	344.61	277.62	277.80			23.37		950.35		
			Difference	3.33	0.84		0.	60	30.83		
					C	Case-1 : I	ncrease in TPD				
Г				' л	F		6038.17				
	INP 3	От Г с	akh / yr.		F	ull time	AI mode Oper. TPD		6111.51		
_			arti / yi		P	Profit per	^r Tonne (for Mill only)		INR 150.00		
	Increas	se in P	roduction		P	Profit increase per day			INR 11,000.75		
					P	Profit increase per year			INR 3,300,226.24		
1		OR		1							
I				C	Case-2 : Same TPD Level			6038.17			
- I				F	Reduced Run Hrs.			21.74			
			l	F	Full time	Al mode		21.7-			
	INR 1	akh / yr.		Idle Time Hrs.				0.26			
	Reduction in Mill Operating Hrs.				-	No Load			4500		
					Power Saving per day kWh				1188.00		
. L			- '			aving per Year kWh		356,401.45			
					ŀ	Power C	ost Saving per Year	IN	R 1,960,207.98		
					D	Diff in Pow	ver Consumption Unit kV	Vh	0.60		
	INP 2	6т I а	akh / vr		D	oiff in Pow	ver Consumption Unit kW	Wh			
INR 26+ Lakh / yr.							with 30% Error Margin		0.4		
Reduction in Specific Power Consumption						Power Cost Saving per Hr.			INR 541.17		
							st Saving per Day		INR 8,658.78		
				Power Cost Saving per Year			INR 2,597,633.2				
		n <mark> </mark>		PUTTOM							

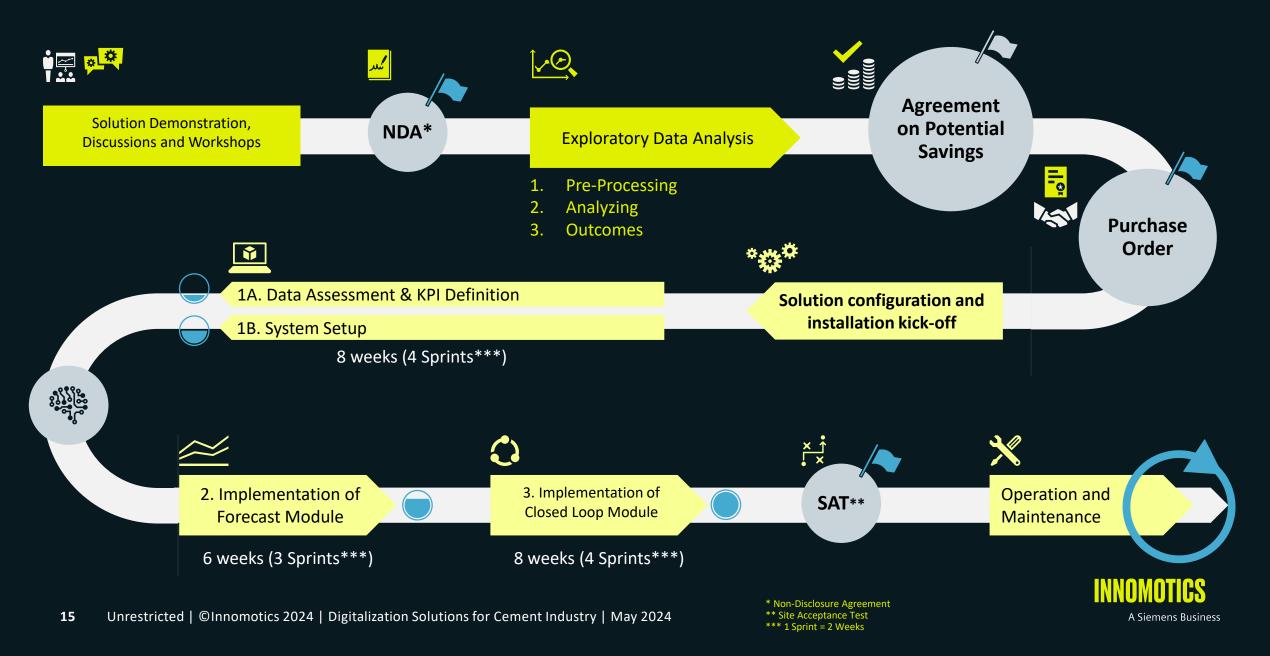
Power cost per unit: INR 5.5Price per bag of cement: INR 300

- Days of Operation in a year: 300 days
- Mill Operating Hrs. per day: 22 Hrs.

A Siemens Business

Summary of Digitalization Offerings

Sr. No.	Solution	Description	Key Benefits						
	Stabilization & optimization of	processes							
1	AI* assisted Kiln Operation	Stabilization & optimization of Kiln through AI* controlled operation for effective Kiln operations	 > Improves fuel efficiency > Optimizes Energy consumption 						
2	AI* assisted Mill Operation	Stabilization & optimization of Mill through AI* controlled operation for effective Mill operations	 Increases Power Savings Improves Mill Stability 						
	Enable decision making using p	oredictive analytics							
3	Pre-Heater Cyclone Anomaly Detection	AI* based anomaly detection for preheater blockage with advanced prediction	 Reduction in unplanned stoppages of the assets 						
4	Anomaly Detection in Wagon Tippler	AI* based anomaly detection for Wagon Tippler, giving early alerts for potential breakdowns	 Planned maintenance instead of spontaneous repair 						
5	SIDRIVE IQ	24/7 condition monitoring and comprehensive fleet management of LV / MV motors & drives	 Proactive maintenance through detailed and early damage localization 						
	Integrated and Intelligent Oper	ations							
6	Siemens Data Acquisition &	Comprehensive dashboarding & reporting solution which integrates with various systems and provides actionable insights	 Visibility & secure accessibility of real time & historical data of all systems in the plant 						
	Diagnostics (SiDAD)	required to efficiently manage plant assets, maintenance activities and energy monitoring	 Real-time visibility of the KPIs and prescription for critical variables impacting the KPIs 						


*Artificial Intelligence

Pleased to support you in Digitalization Journey

Stepped Manner Implementation of Digitalization Projects

